New York Times Building
Amongst the skyscrapers of Manhattan, the office block of The New York Times Newspaper is a 21st century archetypal beacon in the world of high rise development. Transparent and bright, filigree and light, technically innovative. The lighting of the 250 metre high curtain facade, made of white ceramic tubes, transforms at night the entire building into a shimmering New York landmark. Thanks to modern lighting technology the skyscraper uses less power than it takes to light the observatory at the top of the Empire State Building.
The New York Times joined with architect Renzo Piano to build a new domicile for itself and another impressive landmark for the city of New York. Its nocturnal appearance was to set high standards: lightness and transparency are the leitmotif that runs throughout the design. This notion was transformed into light by Jean Sundin and Enrique Peiniger of OVI, who used our lighting tools for the facade. Not an easy task in a project as complex as this, but their efforts were well worth it.

The new Powercast projector is just one such tool that creates striking effects on a facade at night. Provided with cutting-edge Spherolit reflector technology, it is designed for a wide range of applications and as many lighting solutions. In LED version, its lens system, consisting of a specially developed collimator and a further lens plane for different light distribution characteristics, ensures optimal lighting control.

The main focus of this issue, however, is on the possibilities of modern lighting control. Various case studies introduce different applications of Light System DALI. Whether lighting control is used as easily and efficiently as by the residents of a Münsterland estate to create the right atmosphere, or applied at the entrance of the Emden Art Hall to produce a striking effect, the applications are virtually boundless.

Scenographic lighting effects turn the window display of the LPP “Reserved Shop” in Warsaw into an extraordinary eye-catcher. Dynamic dimming progressions change the plasticity of the mannequins such that they all but come to life. The whole scenario is, of course, controlled using Light System DALI.

Light and liturgy have always been closely connected. When carefully planned, a lighting system ensures that liturgy has a place even in modern religious services and is augmented by an appropriate dramaturgy of light. Once neatly composed with appropriate light scenes and sequences that factor in the atmosphere, emphasis and spatial perception, the scenographic concept is implemented on site, requiring great skill and finesse to produce the right effect.

DALI is also very much present, this time for our own benefit with our new showrooms in Oslo and Milan. If this has excited your curiosity about lighting control – for scenographic purposes, to save energy, or for pure convenience, why not come and visit us!
Sandnes (Norway)
As part of the regional museum of Sandnes near Stavanger, the Vitenfabrikken is an interactive museum dedicated to the mysteries of science and technology. Cutting-edge technology, however, also applies to its lighting design, from Facoflood facade luminaires in LED varychrome version to the comprehensive Light System DALI.

www.jaermuseet.no/vitenfabrikken
Electrical design: Cowi AS, Stavanger
Architect: Askim & Lantto AS, Oslo
Vitenfabrikken, Sandnes
Architecture: feld72 Architekten, Vienna
www.jaermuseet.no/vitenfabrikken

Glashütte (Saxony)
A truly international feel to this fascinating work of public art. The American artistutz Hauschild commissioned lighting designer Arne Fiedler from Wiesbaden to illuminate his wall relief consisting of thousands of precisely shaped and laminated strips of glass. Fiedler opted for Light System DALI and Optec LED varychrome spotlights to ensure dynamic backlighting for the relief and making the whole work come to life.

www.tutima.com
Glashütte watch and clock making factory, Glashütte
Architect: Kai Stehl Architekten, Dachberg
www.tutima.com

Spreitenbach near Zurich
An eye-catcher en route to the Center Spreitenbach, a large shopping mall. The new connecting bridge between the existing structures and the extension was designed by the architect and designer Matthias Thun, who opted for coloured light. The tools: Facoflood varychrome floodlights with DALI control gear.

Center Spreitenbach, Spreitenbach near Zurich
Lighting design: Matthus Thun
www.centerspreitenbach.ch

Berlin
In 1963, John F. Kennedy won the heart of Germany by declaring, “Ich bin ein Berliner” (I am a Berliner). The German capital has now dedicated a small museum located on Pariser Platz entirely to this influential family, displaying a wide range of pictures and documents from the Kennedy collection of the “Camera Work” Gallery. The bright, elegant exhibition rooms are illuminated by lighting tools from ERCO, including Quadra lens wallwashers.

Kennedy Museum “The Kennedys”, Berlin
Architect: Abcarius & Burns, Berlin
www.the kennedys.de

Alaquàs near Valencia
A small medieval castle becomes a place of culture and learning, contributing to and improving the local identity of the little town of Alaquàs outside Valencia. Trion ceiling washlights illuminate the magnificent coffered ceiling, while Cylinder facade luminaires provide atmospheric lighting for the staircase.

Espacio cultural Castell d’Alaquàs, Valencia
Lighting designer: Claude R. Engle (USA), Lighting Consultant
http://castell.alaquas.org
Bright prospects

Indre Kai, Haugesund (Norway)

Photo: Thomas Mayer, Neuss
www.haugesund.no

Architect: Smedsvig Landskapsarkitekter AS, Bergen
Electrical design engineers: Multiconsult AS, Nesttun; Cowi AS, Haugesund
Installation engineers: Jatec AS, Haugesund
New York Times Building

Manhattan gains another nocturnal landmark in the form of a new skyscraper, built for the well-established newspaper and featuring an illuminated facade. Architectural historian and lighting journalist Margaret Maile reports for us from New York.

Early in the 20th century, New York City set the standard for the modern metropolis with its soaring skyscrapers and luminous skylines. At the opening of the 21st century the city has witnessed a renaissance in tall building design, with none more remarkable than The New York Times Building designed by Renzo Piano Building Workshop/Fx Fowle and with lighting design by Jean Sundin and Enrique Periniger of the Office for Visual Interaction (OVI). This monolithic tower of quiet beauty transcends the frenetic energy of Times Square and presents a technologically innovative, yet timeless icon for The New York Times and the city itself.

Lighting concept exterior
Renzo Piano has said, “The story of this building is one of lightness and transparency” and the notion of transparency and light runs throughout the design of the New York Times Building – from the ultra clear, low-iron glass and ceramic rods that compose the double-skin curtain wall to the carefully calibrated floodlighting that gives a delicate, warm glow to the exterior while allowing visual connection with the building’s interiors.

At OVI, concept, innovation and technology always work in tandem, therefore it is not surprising that OVI’s remarkable lighting program for the exterior of the New York Times Building began with the concept of lightness as well as the requirements of properly and efficiently illuminating the tower’s pioneering ceramic screens – the First of their kind in the United States. According to Sundin, “the setting out point for the exterior was the screens.” With the goal of articulating the soaring, lace-like quality of the screens, OVI developed a scheme where the floodlighting could be achieved with a single series of luminaires and a single lamp type. ERCO fixtures equipped with 250W Metal Halide lamps with an FC2 base were paired with varying optical reflector systems to create the desired wallwash effect for the entire 260-meter elevation of the east and west facades. Narrow beam optics aimed to the top of the building to provide a long throw of light, while narrow beams with spread lenses illuminate mid-levels and wide flood cast light on the base of the building. OVI chose metal halide lamps for their exceptionally long life of 10,000hrs+ and specified a warm, neutral white 3000K color temperature to complement the building’s signature off-white ceramic screens.

As with many OVI projects, exacting technical performance is a fundamental part of the lighting program of the New York Times Building. For the finely calibrated floodlighting, luminaires with locking mechanisms allowed the necessary precision adjustments; while the optical design and integrated glare control minimize light pollution in the night sky.

The architect: Renzo Piano
Often working together with designers such as Richard Rogers and Peter Rice, Piano has created key monuments of architecture and civil engineering all around the globe. His head office – named ‘Renzo Piano Building Workshop’ – is still based in his hometown of Genoa to this day; plus he has branches in Paris and project site offices throughout the world. In over 40 successful years in his profession, he has not left any leaf of architectural prizes untouched. A host of architectural prizes pay tribute to his special nature and social aspects. There is nothing that can be described as “typically Renzo Piano”, but always a surprisingly new design born out of the building’s function, the user requirements and the constraints of the climate and energy resources. His forte is tricky urban-development tasks such as the reconstruction and redevelopment of Potsdam Square in Berlin. The name Renzo Piano is synonymous not only with functioning museums and cultural buildings, but also with overcoming the challenges of utilitarian architecture, such as road-traffic infrastructure and industrial plants. Teaching and further education are permanently anchored in Renzo Piano’s business philosophy, while ecological engineering is taking an ever-increasing place in his designs. These strands of exhibition, ecological oasis, training center and research institute all come together in the world’s ‘greenest’ natural science museum: the ‘California Academy of Sciences’ in San Francisco.

www.rpbw.com
Laser direction finders were used to precisely aim the luminaires onto the facade. Aided by the green dot of light on the facade (right), the installation engineers were able to locate and fix the correct angle of adjustment (below).

Computer simulations were used in advance of the installation work to determine the position and aim of the luminaires that would give the best brightness progression (left).

Focusing the outdoor lighting

To illuminate extraordinarily large buildings or surfaces, you can simply use extraordinarily large luminaires and power outputs – or you can distribute the required luminous flux over a relatively large number of more compact luminaires. The latter not only has the advantage that you can fall back on standard, more economical lamps and luminaires, but it also allows a greater uniformity of lighting to be achieved – albeit only if you succeed in precisely aiming each luminaire such that the individual beams optimally overlap.

The lighting designers at OVI have already used this principle in many projects including, for instance, the plenary chamber of the Scottish Parliament and the US Air Force Memorial in Arlington. In the latter case, to achieve exactly the desired illuminance levels, OVI used laser sights for the first time, temporarily mounting them to the luminaires during focusing. Similarly, to achieve the desired uniform brightness progression of 1:3 between base and pinnacle, the projectors on the New York Times Building were also precisely aimed using lasers to map out the computer-calculated design and then locked in position.

Computer simulations were used in advance of the installation work to determine the position and aim of the luminaires that would give the best brightness progression (left).
The lighting concept takes a differentiated approach to each functional zone as can be seen here at the security checkpoint. Lightscoop ceiling washlights mounted on special brackets give an idea of scale to the spacious lobby.

The lobby wall displays media art by Ben Rubin and Mark Hansen. Their “Moveable Type” piece consists of 560 text displays which a complex computer program keeps supplied with news contents from the current online edition of the New York Times and the paper’s digital archives.

The lobby wall displays media art by Ben Rubin and Mark Hansen. Their “Moveable Type” piece consists of 560 text displays which a complex computer program keeps supplied with news contents from the current online edition of the New York Times and the paper’s digital archives.

Foyer and garden lighting concept
The story of transparency and lightness continues in the public areas of the ground floor of the New York Times Building. OVI translated these metaphoric qualities into three-dimensional space by finely composing light levels to visually activate and connect several distinct areas – the lobby, the central glass-walled enclosed garden, and the multi-use space of The Times Center.

Describing OVI’s design process Sundin says, “We are composing an entire view and the challenging thing about that is, based on the transparency of this project, everywhere you look you have views. It has to look good from every vantage point.” The central glass-enclosed garden played a central role in anchoring these changing vistas and roaming perspectives, serving to guide the eye through the interconnected architectural volumes of the ground floor.

In order to achieve such a finely balanced composition for the public spaces, OVI simultaneously addressed both aesthetic goals and technical requirements. Recognizing the specific light levels necessary for such programmatic elements as lobby circulation, security, retail areas, displays and more, OVI began by mapping out a lighting master plan to determine how these needs could be fulfilled while preserving and even enhancing views into the garden. Peiniger says, “We were careful not to let one element dominate. We considered the space and views in terms of foreground, middle ground and background.” OVI was conscious of highlighting the garden as a focal point without pushing the lighting to an extreme in either direction. For example, too little light in the adjacent areas would create a ‘funnel effect’. However, “a blanket of same light everywhere” according to Peiniger, would greatly undermine the uniqueness of each element.

Manhattan has a new and architecturally discerning facility with ultramodern furnishings and fittings in the form of The Times Center within the ground floor of the skyscraper. It regularly functions as a venue not only for talk shows but also for chamber concerts and film shows.

Foyer and garden lighting concept
The story of transparency and lightness continues in the public areas of the ground floor of the New York Times Building. OVI translated these metaphoric qualities into three-dimensional space by finely composing light levels to visually activate and connect several distinct areas – the lobby, the central glass-walled enclosed garden, and the multi-use space of The Times Center.

Describing OVI’s design process Sundin says, “We are composing an entire view and the challenging thing about that is, based on the transparency of this project, everywhere you look you have views. It has to look good from every vantage point.” The central glass-enclosed garden played a central role in anchoring these changing vistas and roaming perspectives, serving to guide the eye through the interconnected architectural volumes of the ground floor.

In order to achieve such a finely balanced composition for the public spaces, OVI simultaneously addressed both aesthetic goals and technical requirements. Recognizing the specific light levels necessary for such programmatic elements as lobby circulation, security, retail areas, displays and more, OVI began by mapping out a lighting master plan to determine how these needs could be fulfilled while preserving and even enhancing views into the garden. Peiniger says, “We were careful not to let one element dominate. We considered the space and views in terms of foreground, middle ground and background.” OVI was conscious of highlighting the garden as a focal point without pushing the lighting to an extreme in either direction. For example, too little light in the adjacent areas would create a ‘funnel effect’. However, “a blanket of same light everywhere” according to Peiniger, would greatly undermine the uniqueness of each element.

Manhattan has a new and architecturally discerning facility with ultramodern furnishings and fittings in the form of The Times Center within the ground floor of the skyscraper. It regularly functions as a venue not only for talk shows but also for chamber concerts and film shows.
Let the lighting technology decide

Margaret Maile interviews Jean Sundin and Enrique Peiniger in OVI’s offices

www.oviinc.com

EP: Our approach is to ‘reverse-engineer’ the lighting design. At the beginning of a project we think about the end-user and how the luminaires will be maintained. The luminaire selection is an evaluation of needs and technical performance. There are a lot of tools to choose from.

JS: We created a lighting design for the entire building exterior and all public areas of the project, which only requires 12 different lamp types. We evaluated many manufacturers who we know would be suited to the project as well as the product numbers, handling and maintenance features, technical features and other issues. We’ve cross-referenced and evaluated all of them in great detail.

EP: Who has a locking device? Who has a captive screw? Who has an integral glare control? We compared all of their features and capabilities. For example some fixtures require two different lamps and wattages with two different maintenance cycles due to lamp life.

JS: In the end, ERCO fixtures were selected. We could illuminate the entire facade utilizing three different luminaire optical systems which all take the same lamp. The fixtures are energy efficient and visually appropriate. It takes a multi-disciplinary approach to solving these kinds of problems in terms of lighting, in addition to illuminating the monolithic ceramic facade screens.

MM: So you were not just looking to the past or present context, but actually to the future context of the New York Times Building?

EP: We think a lot about how our projects age over time. We know that the Times Square district will continue to evolve and change character as time goes on and The New York Times Building will anchor this new neighborhood and business district.

JS: The lighting is really imbedded as part of the architectural design, it is locked into the facade and it is part of the overall building module. This building is a new landmark for the city as such the design has to be long lasting. The taxicab yellow makes reference to the city as such the design has to be long lasting.

MM: What was the single biggest challenge for OVI over the course of the New York Times Building project?

JS: Helping others realize that with only 250 watts, we could illuminate a facade that is more than 260 meters high! Typical floodlights require 400w or 1000w to do the same job.

EP: Keeping the aim in sight. To not get distracted by all the daily work. You have to identify the big picture, stay focused and determine how to implement it.
The context of the Times Square District – one of the brightest and most iconic of such urban areas in the world – was central to the concept development for the exterior lighting of the New York Times Building. The timeless, classic quality of RPBW’s architecture is fundamentally at odds with the exploitation of media screens and skins typical to Times Square. However, as a new building in the Times Square District, the New York Times Building was required to animate the facade to be in compliance with district regulations. As Peiniger describes, “The point for us was to find the language that was appropriate for The New York Times and for RPBW.”

OVI suggested that the pairings of ERCO fixtures used along the pedestrian level of the building’s podium be custom painted taxicab yellow. These ERCO fixtures were mounted as direct extensions of the facade’s modular bays, providing visual punctuation to the rhythm of the building as well as illuminating the facade and the walkway with a sense of excitement and energy. In this way OVI was able to visually animate the facade (and satisfy local authorities) in a manner that has great resonance with the culture and streets of New York City without contradicting the character of the architecture.

Contributors

Client: The New York Times/Forest City Ratner Companies

Architects: Renzo Piano Building Workshop (Genoa/Paris) in collaboration with FXFowle Architects, P.C. (New York)

Competition (2000)

Design Team: B. Plattner (senior partner in charge), E. Volz with G. Bianchi, J. Moolhuijzen (partners), S. Ishida, P. Vincent (senior partners), A. Eris, J. Knaak, T. Miklasch, M. Pimmel, M. Prini, A. Symietz

Consultants: Ove Arup & Partners (structure and services)

Consultants: Thornton Tomasetti (structure); Flack & Kurtz (services); Jenkins & Huntington (vertical transportation); Helman & Associates (façade consultant); Ludwig & Weiler (storefront); Office for Visual Interaction (lighting); Gender Associates (interiors); H. M. White (landscape); AECOM (construction manager)
In the beginning there was light we are told, and from this development is still not in sight: systems it has been a long journey and the truth would have been no night or twilight. But nowhere does it state that switches and lighting systems are strictly segregated. This was the case recently at the new BMW Welt, which several manufacturers from different fields list as a current reference project with some pride.

In functional buildings, artificial light and dark is, by contrast, a comparatively recent development because the physics of the arc discharge is quite amenable to any attempts to control its brightness. The trick with the temporary interruption of the current does not work here because, if the interval with- out current is too long, the gas becomes too cold and the lamp goes out. A solution has now been found for this and other problems such as colour shifts or restlessness. Flickering on the lowest brightness setting has also been rectified. It is just the dimming capability of high-pressure sodium lamps that lags a little behind. All the same, the currently achievable reduction in luminous energy is quite substantial and has many similarities with stage lighting, which is also encountered in this context. Its central controller can quickly generate great variety and brightness pro- grammations on up to 512 channels in parallel and in real-time.

Where the function concentrates on the lighting effect, the user interface of the control systems is largely graphically orientated. Although it is easy to adjust the light output of every single pixel, users tend to prefer working with the ready-made show effects that come with the system. This requires them to suit their current project. Plus the effect can be checked on the screen straight away.

The third application area is the sit- uational use of light, whereby light is used to emphasise certain features of a site, to make areas accessible for various uses and to give such areas a certain atmosphere. The visibility of the public space is adjusted to suit the external circumstances.

From remote控制 halls to home cinema- nas, the control systems must be easy to use in everyday operation, even for those with developing stage lighting systems. This perspective will gain even more weight in times of energy costs, further savings being possible in the lighting itself. The design of the system must not require an expert knowledge of stage lighting control and presences that ensure the lights are on only when actually needed. In addition to the reduced energy costs, there are also other savings to be made as several comfort features, extensively automating tedious operations such as automat- ing drinking fountains. The borders between these three areas are flowing boundaries. Providers who are already established and are capable of happily roaming into the other areas. Event technology, complete with all the stage paraphernalia of moving objects, scanners and projectors, is used in architec- tural lighting. Conversely, experienced providers of architectural lighting systems can extend their portfolio by addressing new market segments with large expand product portfolios by adding effect spotlights and therefore become fit for more demanding applications. Then all these providers finally come back together around the same pro- jectors. This was the case recently at the new BMW Welt, which several manufacturers from different fields list as a current reference project with some pride.

The increased communication capability of LED systems makes them a perfect tool for simplifying the electrical installation of lighting systems. But it is not work here because, if the interval with- out current is too long, the gas becomes too cold and the lamp goes out. A solution has now been found for this and other problems such as colour shifts or restlessness. Flickering on the lowest brightness setting has also been rectified. It is just the dimming capability of high-pressure sodium lamps that lags a little behind. All the same, the currently achievable reduction in luminous energy is quite substantial and has many similarities with stage lighting, which is also encountered in this context. Its central controller can quickly generate great variety and brightness pro- grammations on up to 512 channels in parallel and in real-time.

Where the function concentrates on the lighting effect, the user interface of the control systems is largely graphically orientated. Although it is easy to adjust the light output of every single pixel, users tend to prefer working with the ready-made show effects that come with the system. This requires them to suit their current project. Plus the effect can be checked on the screen straight away.

The third application area is the sit- uational use of light, whereby light is used to emphasise certain features of a site, to make areas accessible for various uses and to give such areas a certain atmosphere. The visibility of the public space is adjusted to suit the external circumstances.

From remote control halls to home cinema- nas, the control systems must be easy to use in everyday operation, even for those with developing stage lighting systems. This perspective will gain even more weight in times of energy costs, further savings being possible in the lighting itself. The design of the system must not require an expert knowledge of stage lighting control and presences that ensure the lights are on only when actually needed. In addition to the reduced energy costs, there are also other savings to be made as several comfort features, extensively automating tedious operations such as automat- ing drinking fountains. The borders between these three areas are flowing boundaries. Providers who are already established and are capable of happily roaming into the other areas. Event technology, complete with all the stage paraphernalia of moving objects, scanners and projectors, is used in architec- tural lighting. Conversely, experienced providers of architectural lighting systems can extend their portfolio by addressing new market segments with large expand product portfolios by adding effect spotlights and therefore become fit for more demanding applications. Then all these providers finally come back together around the same pro- jectors. This was the case recently at the new BMW Welt, which several manufacturers from different fields list as a current reference project with some pride.

The increased communication capability of LED systems makes them a perfect tool for simplifying the electrical installation of lighting systems. But it is not work here because, if the interval with- out current is too long, the gas becomes too cold and the lamp goes out. A solution has now been found for this and other problems such as colour shifts or restlessness. Flickering on the lowest brightness setting has also been rectified. It is just the dimming capability of high-pressure sodium lamps that lags a little behind. All the same, the currently achievable reduction in luminous energy is quite substantial and has many similarities with stage lighting, which is also encountered in this context. Its central controller can quickly generate great variety and brightness pro- grammations on up to 512 channels in parallel and in real-time.

Where the function concentrates on the lighting effect, the user interface of the control systems is largely graphically orientated. Although it is easy to adjust the light output of every single pixel, users tend to prefer working with the ready-made show effects that come with the system. This requires them to suit their current project. Plus the effect can be checked on the screen straight away.

The third application area is the sit- uational use of light, whereby light is used to emphasise certain features of a site, to make areas accessible for various uses and to give such areas a certain atmosphere. The visibility of the public space is adjusted to suit the external circumstances.

From remote control halls to home cinema- nas, the control systems must be easy to use in everyday operation, even for those with developing stage lighting systems. This perspective will gain even more weight in times of energy costs, further savings being possible in the lighting itself. The design of the system must not require an expert knowledge of stage lighting control and presences that ensure the lights are on only when actually needed. In addition to the reduced energy costs, there are also other savings to be made as several comfort features, extensively automating tedious operations such as automat- ing drinking fountains. The borders between these three areas are flowing boundaries. Providers who are already established and are capable of happily roaming into the other areas. Event technology, complete with all the stage paraphernalia of moving objects, scanners and projectors, is used in architec- tural lighting. Conversely, experienced providers of architectural lighting systems can extend their portfolio by addressing new market segments with large expand product portfolios by adding effect spotlights and therefore become fit for more demanding applications. Then all these providers finally come back together around the same pro- jectors. This was the case recently at the new BMW Welt, which several manufacturers from different fields list as a current reference project with some pride.

The increased communication capability of LED systems makes them a perfect tool for simplifying the electrical installation of lighting systems. But it is not work here because, if the interval with- out current is too long, the gas becomes too cold and the lamp goes out. A solution has now been found for this and other problems such as colour shifts or restlessness. Flickering on the lowest brightness setting has also been rectified. It is just the dimming capability of high-pressure sodium lamps that lags a little behind. All the same, the currently achievable reduction in luminous energy is quite substantial and has many similarities with stage lighting, which is also encountered in this context. Its central controller can quickly generate great variety and brightness pro- grammations on up to 512 channels in parallel and in real-time.

Where the function concentrates on the lighting effect, the user interface of the control systems is largely graphically orientated. Although it is easy to adjust the light output of every single pixel, users tend to prefer working with the ready-made show effects that come with the system. This requires them to suit their current project. Plus the effect can be checked on the screen straight away.

The third application area is the sit- uational use of light, whereby light is used to emphasise certain features of a site, to make areas accessible for various uses and to give such areas a certain atmosphere. The visibility of the public space is adjusted to suit the external circumstances.

From remote control halls to home cinema- nas, the control systems must be easy to use in everyday operation, even for those with developing stage lighting systems. This perspective will gain even more weight in times of energy costs, further savings being possible in the lighting itself. The design of the system must not require an expert knowledge of stage lighting control and presences that ensure the lights are on only when actually needed. In addition to the reduced energy costs, there are also other savings to be made as several comfort features, extensively automating tedious operations such as automat- ing drinking fountains. The borders between these three areas are flowing boundaries. Providers who are already established and are capable of happily roaming into the other areas. Event technology, complete with all the stage paraphernalia of moving objects, scanners and projectors, is used in architec- tural lighting. Conversely, experienced providers of architectural lighting systems can extend their portfolio by addressing new market segments with large expand product portfolios by adding effect spotlights and therefore become fit for more demanding applications. Then all these providers finally come back together around the same pro- jectors. This was the case recently at the new BMW Welt, which several manufacturers from different fields list as a current reference project with some pride.

The increased communication capability of LED systems makes them a perfect tool for simplifying the electrical installation of lighting systems. But it is not work here because, if the interval with- out current is too long, the gas becomes too cold and the lamp goes out. A solution has now been found for this and other problems such as colour shifts or restlessness. Flickering on the lowest brightness setting has also been rectified. It is just the dimming capability of high-pressure sodium lamps that lags a little behind. All the same, the currently achievable reduction in luminous energy is quite substantial and has many similarities with stage lighting, which is also encountered in this context. Its central controller can quickly generate great variety and brightness pro- grammations on up to 512 channels in parallel and in real-time.

Where the function concentrates on the lighting effect, the user interface of the control systems is largely graphically orientated. Although it is easy to adjust the light output of every single pixel, users tend to prefer working with the ready-made show effects that come with the system. This requires them to suit their current project. Plus the effect can be checked on the screen straight away.
Looking ahead

What does the future of lighting control systems look like? Buildings and their technical features and fittings are a long-term commodity and progress tends to catch us sedately pace. Faster-changing industries such as the automobile or telecommunications branches are more on the look out for new technology which Watch- ing them gives us an idea of the contours of future development trends.

Automation increases the utility of a building by removing any tedium involved in using it. This is nothing new. In telephony for instance, automated switchboards replaced the operator lady many years ago. What is new is the speed and complexity of such change. Both are growing at the same rate that software did when it broke the bonds of mechanics and electronics. Two examples from recent times: anyone will still remember having to fiddle around with the choke to get an engine to start in the winter—this is now done without fuss by the engine management system, which also ensures that the engine runs efficiently and economically in all other situations as well. Or connecting up PC networks used to be a secret science, but it is now a largely automatic and incidental matter at tops in LAN parties.

If such trends are transported into the world of lighting controls, one forgets for a minute today’s excessive configuration setups and thinks of other things: Just suppose the power consump- tion of a lighting system were to be tuned down to reduce as daylight was used. You attach light sensitive luminaires to the ceiling, configure them and then—absolutely nothing. No calibration, no setting the target values, nothing. Each luminaire independ- ently recognizes the lighting situation in its own spatial zone and adjusts itself; they all automatically communicate with each other and agree on a uniform brightness progression. There is no nervous flittering of luminaires as they brighten and dim on fluctuating light, cloudy days and stormy days caused by rearranging the furniture. In short, it just works without being annoying. You are thinking even further: I can put up several of these two pictures. The first system, an ECS type, was programmed by a wired remote control unit and controlled a handful of circuits in the audi o- rium of the State University of Aachen. Today a Light System DALI operates over 180 luminaires with more than 375 individ- ual addresses—easily accessed with the Light Studio PC software (below).
New: Powercast projectors and floodlights

Powercast is a universal range of economic lighting tools for outdoor applications. The projectors and floodlights feature cutting-edge technologies including LEDs and Spherolit reflectors for efficient visual comfort. Their system design with a uniform housing shape produces a symmetrical light distribution from narrow spot to wide flood accent lighting and also various wide beam distribution patterns. Powercast is a highly versatile, cost-effective and flexible range of luminaires used, as an example, for the illumination of facade details, signs or vegetation.

Powercast with LED
As a particularly low-maintenance and energy-efficient version, Powercast projectors are also available with LED technology in warm white and daylight white light colour. Optimal lighting control is ensured by lens systems consisting of a specially developed collimator and different lenses for spot, flood and wide flood characteristics. The resulting beam angle is based on the usual spotlight characteristics for conventional ERCO spotlights.

New: Powercast projectors and floodlights

Narrow spot
To accentuate smaller objects with high luminance or to cover considerable distances between luminaire and object. Beam angle < 10°.

Spot
The standard characteristic to accentuate all kinds of objects, specifically to model the three-dimensional shape. Beam angle 10°–20°.

Flood
For efficient accent light on larger objects or for wider spread lighting through specific areas in a room. Beam angle 25°–35°.

Wide flood
To provide flexible floodlighting for surfaces and specific areas in a room. Beam angle > 45°.

Oval flood
To provide floodlighting for surfaces and objects. The oval-shaped beam can be selected for vertical or horizontal light distribution.

Washlight
Wide-beam, asymmetrical light distribution for floodlighting vertical surfaces such as facades, walls or hedges.

Lighting control
The plastic collimating lens designed and produced by ERCO creates a parallel beam, while a further special lens produces the precise beam angle required.

Daylight white
Powercast spotlights in daylight white of 5500K ensure superior efficiency with acceptable colour rendition. The light colour is similar to daylight.

Warm white
In warm white, Powercast spotlights have a somewhat lower light output ratio than in daylight white, but better colour rendition. The light colour of 3500K closely approximates the light of halogen lamps.

Powercast produces a wide range of light distribution patterns for a wide variety of lighting tasks.

The Powercast projectors for low-voltage halogen lamps or metal halide lamps feature replaceable Spherolit reflectors.

The housing swings open for easy lamp or reflector change. The Spherolit reflector can be replaced without tools.

Powercast with LED
As a particularly low-maintenance and energy-efficient version, Powercast projectors are also available with LED technology in warm white and daylight white light colour. Optimal lighting control is ensured by lens systems consisting of a specially developed collimator and different lenses for spot, flood and wide flood characteristics. The resulting beam angle is based on the usual spotlight characteristics for conventional ERCO spotlights.
New DALI products

Connection of Light System DALI and PC via network
In addition to USB cables, the PC with the Light Studio software can now be connected to the Light Server 64+ via Ethernet, either directly by cable with a single Light Server 64+ or via a hub or switch. The PC and hub can also be connected by cable or wirelessly (WLAN). This option provides the flexibility needed to set up systems in more than one room, on a wireless notebook PC. Scenes can thus be programmed where they are actually needed.

Partition interconnector
Scenic light seems indispensable particularly in multifunctional rooms such as conference rooms or banquet halls. There are only a few lighting control systems that can manage rooms which are separated by movable partition walls in a truly intelligent and user-friendly sort of way. The current generation of the Light Server 64+ and the Light Studio software provide just such a practical solution. The limit switches of up to 4 partition walls in the system signal their states via the digital/s Switch inputs on the Light Server. The operating devices in the room segment concerned, such as push-buttons or Light Changers, then respond as was previously programmed in the Light Studio software and control the combined rooms as shared zones.

Master dimming action
The master dimming function is used to increase or decrease the overall brightness of a zone using push-buttons or the Light Changer. To master special lighting tasks and take account of differences in the dimming function of the lamps, the master dimming action of each Light Client can now be controlled individually. The Light Book module of the Light Studio software provides the relevant tool. Dimmable Light Clients with LEDs, low-voltage halogen lamps or fluorescent lamps for example, provide a choice of linear function and operation that prevents the Light Client from falling below a pre-defined limit or in turn, switches it off. Switchable Light Clients (DALI switching actuators, HIT luminaires) can be given individual switching thresholds.

Documenting projects
To document lighting control projects using Light System DALI, the Light Studio software now makes use of a dialogue which provides a range of adaptable options. The resulting page number of the documentation is automatically identified and displayed. The project documentation can then be printed or, depending on the PC configuration, can be produced in a digital format (e.g., XPS, PDF).
Lighting control systems with digital inputs
Lighting control systems such as Light System DALI allow the setup of complex light scenes and sequences to match the functional aspect of lighting with flexible design to the architecture. The light scene to be called up in a specific situation is determined either automatically by way of sensors or manually using appropriate control panels. In addition to comfortable, system-specific input devices, the lighting control system should also allow integration of standard push-buttons, switches and sensors. For this, the central controller, used for purposes such as storing the data of various light scenes and sending them to the luminaires, requires programmable inputs that can be flexibly assigned the required functions. Light System DALI provides two basic types of Light Server inputs: digital and analogue.

Digital inputs only know the "off" and "on" settings and cannot process intermediate values. Switches and push-buttons send appropriate signals. These alone allow a wide range of different operating scenarios: a switch can change between two light scenes or between a light scene and the previous scene. A push-button can recall a predefined light scene or, on repeated operation, run off scene lists of up to 30 scenes. Multiple keypads are used to recall several light scenes directly: the Light Server provides a maximum of 8 digital inputs here. To provide the same functionality in several places in the room, if the room has more than one access point, for example, the push-buttons are connected in parallel.

In terms of output signal, twilight switches or motion sensors are similar to a switch and can be connected to a digital input. The switching threshold, the measured value at which the sensor signal changes its status, is set at the sensor itself. The change of status activates the function pre-programmed in the lighting control system. The functions to be activated by signals to the digital inputs are defined and customised in the Light Studio software. In addition to recalling light scenes, sequences and scene lists, further options available are special functions such as master dimming using rocker switches for operating control. Other such special features include the timer function for push-buttons, e.g., for timed staircase lighting, or the "All Clients" function, which switches all luminaires in a system to 0% or 100%.

Contrary to digital inputs, analogue inputs also register intermediate values. This makes it possible, for example, to connect a brightness sensor which, in contrast to the twilight switch, sends an analogue rather than a digital signal with a voltage proportionate to the brightness level measured.

As an outdoor device, the brightness sensor can adjust the artificial lighting to the daylight conditions. When using Light System DALI, the switching thresholds are predefined in the Light Studio software, with light scenes assigned to the value intervals. A typical application is gradually supplementing daylight with artificial light when the intensity of the daylight is no longer sufficient for the lighting tasks required. At workplaces, for example, natural light can thus be used more easily and saves a considerable amount of energy. In museums, brightness sensors control the ratio of daylight to artificial light, but also shading systems preventing damage to artwork due to excessive exposure to light. A suitable delay switch in the logic of the analogue inputs prevents undesired toggling if the analogue input value fluctuates around a switching threshold.

In other situations, such as in restaurants, shops or shop windows, artificial light is often used to create a certain contrast. Full daylight requires higher illuminances than overcast conditions, in twilight or later at night, i.e., high brightness values are assigned bright light scenes. Thomas Schielke

Lighting control systems with analogue inputs

87

In the lighting control software, different brightness values are assigned different light scenes.
Built in 1702, light floods through the glass wall of this otherwise authentically restored estate. The aesthetics and comfort of today join with century-old traditions.

Many city dwellers dream of living in the country, but only a few turn their dream into reality with such dedication as the owner of this residence. An entrepreneur in the creative industry, he had this listed estate in the Münsterland converted into a refuge for himself and his family, combining historical elements with the latest mod cons and minimalist aesthetics.

The design approach chosen assists the residential architectural integration of 21st century lighting technology and lighting controls as discreetly and compacted as never before. The combination of low-voltage recessed spotlights and wallwashers from the Quadra range, with their own Light System DALI control, typifies in pure unadulterated form ERCO’s concept of “light, not luminaires”. Freely programmable and easily recalled light scenes allow the residents to set the right mood with ever changing effects for their ambience and their life, while effectively controlling and reducing their energy consumption.

As control panels, ERCO chose Light Changers with their easy-to-use touch screen display. The light scenes are shown with plain text names and numerous additional functions provide further options.

Combining both types of lighting lends a bright, inviting and festive atmosphere.

A living space, with ever changing effects created by different light scenes. Initially neutral, but then with a significant proportion of vertical illuninace added.

A scene with sparsely used and specifically directed accent lighting emphasizes furniture and objects in individual zones of the room, evoking a feeling of intimacy.

Scene light is also ideal for the kitchen. The first light scene provides brilliant light for the workspaces and sets the mood for cooking.

The second light scene with floodlighting on the opposite wall creates a more neutral atmosphere in the room.

In the third light scene, the vertical components are dimmed in favour of the pendant luminaire, the table becoming the center of attention.

Many city dwellers dream of living in the country, but only a few turn their dream into reality with such dedication as the owner of this residence. An entrepreneur in the creative industry, he had this listed estate in the Münsterland converted into a refuge for himself and his family, combining historical elements with the latest mod cons and minimalist aesthetics.

The design approach chosen assists the residential architectural integration of 21st century lighting technology and lighting controls as discreetly and compacted as never before. The combination of low-voltage recessed spotlights and wallwashers from the Quadra range, with their own Light System DALI control, typifies in pure unadulterated form ERCO’s concept of “light, not luminaires”. Freely programmable and easily recalled light scenes allow the residents to set the right mood with ever changing effects for their ambience and their life, while effectively controlling and reducing their energy consumption.

As control panels, ERCO chose Light Changers with their easy-to-use touch screen display. The light scenes are shown with plain text names and numerous additional functions provide further options.

Combining both types of lighting lends a bright, inviting and festive atmosphere.

A living space, with ever changing effects created by different light scenes. Initially neutral, but then with a significant proportion of vertical illuninace added.

A scene with sparsely used and specifically directed accent lighting emphasizes furniture and objects in individual zones of the room, evoking a feeling of intimacy.

Scene light is also ideal for the kitchen. The first light scene provides brilliant light for the workspaces and sets the mood for cooking.

The second light scene with floodlighting on the opposite wall creates a more neutral atmosphere in the room.

In the third light scene, the vertical components are dimmed in favour of the pendant luminaire, the table becoming the center of attention.

Many city dwellers dream of living in the country, but only a few turn their dream into reality with such dedication as the owner of this residence. An entrepreneur in the creative industry, he had this listed estate in the Münsterland converted into a refuge for himself and his family, combining historical elements with the latest mod cons and minimalist aesthetics.

The design approach chosen assists the residential architectural integration of 21st century lighting technology and lighting controls as discreetly and compacted as never before. The combination of low-voltage recessed spotlights and wallwashers from the Quadra range, with their own Light System DALI control, typifies in pure unadulterated form ERCO’s concept of “light, not luminaires”. Freely programmable and easily recalled light scenes allow the residents to set the right mood with ever changing effects for their ambience and their life, while effectively controlling and reducing their energy consumption.

As control panels, ERCO chose Light Changers with their easy-to-use touch screen display. The light scenes are shown with plain text names and numerous additional functions provide further options.
The Light System DALI used in Emden’s Art Hall integrates a multitude of different luminaires such as indoor and outdoor luminaires, DALI-compatible Light Clients and standard luminaires using DALI dimmers and actuators.

Where public buildings and cultural facilities are of functional use during the day, of night their purpose is to provide a striking appearance in the urban environment. Light System DALI and the Light Studio software with its Light Timer and Light Sequencer modules solve this task both conveniently and economically.

Which temple of art has ever had its own jetty? The Art Hall in Emden owned by the Henri and Eske Nannen Foundation is situated on the picturesque Emden moat. In 1983, the former editor-in-chief of the Stern magazine, Henri Nannen, decided to donate his extensive art collection to his home town of Emden for display in its own museum. The delightful brick building ensemble designed by the architects Ingeborg and Prof. Friedrich Spengelin was handed over to the public in 1986. A gift from Munich-based gallery owner and collector Otto van de Loo increased the collection to the point that the Art Hall needed an extension. In an international competition, the architectural firm of Venneberg & Zech working together with Prof. Friedrich Spengelin won first prize and commenced with their extensive building work in 2006. They developed an energetically optimised concept for the old and extension buildings using intelligent heating and ventilation control systems along with a heat recovery facility. Special focus was placed on the coordination of daylight and artificial light. Wooden components in the old building were painted white, the new part was provided with light-coloured materials to improve the reflection factor for higher illuminances with lower lamp wattages. The venetian blind controller reacts to sunlight and daylight; artificial light is added in appropriate doses and dimmed accordingly.

The reopened Art Hall is not merely one of the main cultural attractions in Emden. Now more so than ever it also takes on the role of an urban-like visiting card. Inside, ERCO’s luminaires place the art in the right light, while new outside lighting lends the entire building ensemble a special nocturnal appearance. The Light System DALI facilitates different lighting scenarios which, where required, can also project coloured light onto the white plaster of the vestibule and foyer walls to bring out effectively the contrast between traditional brick building architecture and the inviting transparency of the glass-encased entrance.

Architects: Friedrich and Ingeborg Spengelin, Hanover; Venneberg & Zech, Hanover.
Photos: Rudi Meisel, Berlin
http://kunsthalle-emden.de
Beautiful old cars are fascinating. As a successful combination of aesthetics and function, vintage vehicles reflect the design of their period and the corresponding technological developments. This fascination comes into its own here in the Central Garage car museum in Bad Homburg, Germany. Since 2007, the former car showrooms have provided an exciting backdrop for the original painted and chrome beauties. These not only include models such as the Mercedes SL, the DKW Monza or the Grantura from the British TVR stables, but also Horex motorcycles, the East German Trabant and the Citroën 2CV.

In addition to the permanent collection and rotating exhibitions on the history of the automobile, the car museum also provides a prestigious venue for various events. For private parties, conferences or company presentations, hosts can make use of a big entrance with a multimedia projection screen, rooms extending over two floors with variable partitioning and an excellently equipped catering facility.

ERCO's flexible lighting concept is perfect for such multifunctional uses. The lighting control of the luminaires with the Light System DALI can create highly varied room atmospheres. Usage scenarios with lighting characters varying between neutral and expressive are easy to set up for the indoor area to suit the client’s wishes. The ambient lighting is provided by Optec spotlights fitted with economical HIT lamps. In the evening, brilliant accent lighting from Optec low-voltage halogen spotlights highlights the exhibits. The dimmable halogen light also provides the ambient and accent lighting for parties and celebrations. Optec spotlights and Focalflood facade luminaires with varychrome technology and high-power LEDs can additionally illuminate walls and columns with coloured light.

The aesthetics of vintage cars is brought out in the room of light produced from a balanced combination of both ambient and accent lighting. Here a Mercedes Benz Type 370S Mannheim from 1931 gleams under the lighting.

In the Optec varychrome LED spotlights with DALI adapters, 12 high-power LEDs produce coloured light. The colour focus of the light can be controlled with the Light Studio software of the Light System DALI. The user interface ensures that the primary colour components are uniformly and softly blended.

The required lighting scenarios in the Central Garage car museum can be set up and recalled quickly and easily with the software integrated in the ERCO Light System DALI installed on a portable PC or laptop. With a few mouse clicks the user can enter dynamic dimming progressions and colour progressions for the DALI-controlled luminaires and can directly check the result of the lighting effects.

Photos: Dirk Vogel, Dortmund

www.central-garage.de
As a fashion label, "Reserved" is the flagship of the Polish textile corporation LPP and presents a grandiose success story for the young market economies in Central and Eastern Europe. Founded as early as 1990 and operating as a stock corporation since 1995, the company has grown rapidly over the past few years. Its stores have expanded far beyond the borders of Poland into neighbouring Baltic countries, the Czech Republic, Slovakia and Hungary and on to Russia and the Ukraine. For the first time in 2007, LPP netted profit in excess of one billion Zloty, about 265 million euros.

The first "Reserved" shop opened in 2000. Today, the chain has over 190 stores with further prospect of growth. The stores are found in city centres, but also in shopping malls such as the Galeria Mokotow in Warsaw. Here especially, amongst the dense competition of international brands, the architectural appearance and the lighting design are crucial. Part of the “Reserved” concept as devised by the office of Studio 1:1 in Gdańsk are dynamic lighting effects using Light System DALI within its shop windows. The designers were banking on the attention factor created by changing light qualities such as contrasts, the direction of the light itself and modelling. DALI-compatible Quinta spotlights for QT12 100W low-voltage halogen lamps are mounted on DALI tracks and connected with the Light Server. For individual control of the spotlights, the designers opted for “dynamic progression” – an option available in the Light Studio software for all dimmable Light Clients. The lighting now attracts the attention of customers and, depending on the decoration, directs their eyes toward the mannequins, the displays or other items within the shop window.

Start the dynamic progression of the dimmer: with the accent lighting dimmed, the general mood is set by a diffuse ambient light. The contrasts are soft.

5 seconds later the accent lighting increases to 100%. Sharp display contrasts are produced from spotlighting the mannequin. For eye-catching and light-changing perception, dynamic progressions can be set at short cycles: LPP chose approx. 10 seconds.

DALI track
When using spotlights with DALI adapters, ERCO’s classic track profile is connected differently from the standard 3-circuit track. Instead of supplying power, two of the copper conductors are used to transmit the DALI signal (DA).
St. Peter’s Church, Stavanger

Liturgy of light with DALI

With a population of over 120,000, Stavanger is Norway’s fourth largest city. Together with Liverpool, it co-bears the title for the European Capital of Culture 2008. The 19th century St. Peter’s Church is one of the city’s architectural jewels, and following elaborate restoration, now serves as a venue for cultural events during the festival year.

The authorities of Stavanger commissioned the building of St. Peter’s Church in 1861 when the medieval cathedral became too small because of population growth. The Norwegian architect Conrad Fredrik von der Lippe (1833-1901) built the neo-Romanesque sacred building between 1864 and 1866. His design was heavily influenced by Karl Friedrich Schinkel’s Church of St. John in Berlin’s Moabit district, an architect with whom he had become acquainted during his studies in Germany.

In the years from 2004 to 2008 the church was given a thorough restoration in line with the strict standards for listed buildings. In particular the nave’s unusual hammer-beam roof had to be extensively secured. Under the guidance of architect Helge Schjelderup, the church building was restored to its former glory in all its solemn, somber beauty and, in addition, was also carefully modified and extended in order to enable flexible, contemporary usage. Thus, as well as providing regular church services, St. Peter’s also serves as an attractive concert hall with excellent acoustics and as a drop-in centre for people living on the fringes of society.

Even the original gas lanterns, now converted to use modern lamps, are once again in place within the church, albeit solely as the decorative component of light, known as “Play of Brilliant”, within a state-of-the-art, flexible lighting system – a system that can be adjusted to suit all usage scenarios and fully exploits the artistic possibilities of controlling the lighting with Light System DALI.

Religion and ritual are inseparable. Since time immemorial religious services have followed a fixed dramaturgy – or rather “liturgy”, to use Christian parlance. Nothing could be more fitting than to augment the sequential order of service with the appropriate scenographic light. For such liturgical purposes and also for the increasing practice of using sacred buildings for cultural events, the Light System DALI lighting control system is an ideal tool. The large number of individually addressable DALI Light Clients provides a variable and flexible matrix of luminaires that enables atmosphere, emphasis and spatial perception to be controlled over a wide range, while pre-defined light scenes can be easily and efficiently set up, saved and recalled either individually, in sequences or on a timer-controlled basis.

The ELDA lighting designer Erik Selmer from Trondheim developed the scenographic lighting concept in close cooperation with ERCO, the architects and monument preservationists.

The DAII installation with numerous individually controllable Optec spotlights and wallwashers provides extreme flexibility and optimum visual comfort. The luminaires feature high cut-off angles and are also mounted far above the field of vision on Monopoll DALI track.

This sequence of images demonstrates how much the spatial perception can be influenced by different lighting scenes.

With its solemn, somber beauty and, in addition, was also carefully modified and extended in order to enable flexible, contemporary usage. Thus, as well as providing regular church services, St. Peter’s also serves as an attractive concert hall with excellent acoustics and as a drop-in centre for people living on the fringes of society.

The DAII installation with numerous individually controllable Optec spotlights and wallwashers provides extreme flexibility and optimum visual comfort. The luminaires feature high cut-off angles and are also mounted far above the field of vision on Monopoll DALI track.

This sequence of images demonstrates how much the spatial perception can be influenced by different lighting scenes.

The DAII installation with numerous individually controllable Optec spotlights and wallwashers provides extreme flexibility and optimum visual comfort. The luminaires feature high cut-off angles and are also mounted far above the field of vision on Monopoll DALI track.

This sequence of images demonstrates how much the spatial perception can be influenced by different lighting scenes.
Backlights

Oslo showroom opening
On the 14th of August 2008, the new ERCO showroom in the Norwegian capital of Oslo ceremoniously opened its gates. Behind the historical, prestigiously illuminated facade on the Kirkegata road, architects and lighting designers now find modern premises. Here, the Norwegian ERCO team offers a full range of architectural lighting services ranging from lighting consultation and provision of samples through to seminars and events.

Contact
ERCO Lighting AS
Kirkegata 5
0153 Oslo
Postboks 771 Sentrum
0104 Oslo
Norway
Tel: +47 2414 8200
Fax: +47 2414 8201
Email: info.no@erco.com

Milan showroom opening
In the Italian design capital of Milan, ERCO puts the accent on lighting design with a new, spacious showroom. Offices, conference rooms and a mock-up area, complete with all the facilities for presenting luminaire samples, are nicely accommodated on two levels in a former industrial building. Even the outdoor area of the “Edificio Sedici” in North Milan has been extensively redesigned. Scenically illuminated with ERCO outdoor luminaires, it now provides an attractive environment for companies from the creative branch. Together with clientele and other friends, ERCO Italy celebrated the opening on the 18th of September 2008 – here are some impressions of the celebrations and the new premises.

Contact
ERCO Illuminazione S.r.l.
Viale Sarca 336 F
20126 Milan
Italy
Tel: +39 02 365 872 84
Fax: +39 02 643 7831
Email: info.it@erco.com

The new showroom fulfills all the requirements for continuing ERCO’s successful sales work in Norway. The large windows afford a deep “insight” into the offices inside and alert the interest of passers-by.

The richly ornamented Wilhelminian facade is scenically illuminated by Cylinder facade luminaires and Grasshopper LED projectors.

ERCO clientele and staff, together with friends and relations, celebrated the showroom opening in a relaxed and casual atmosphere so typical of Scandinavia.

Mediterranean esprit set the tone for the opening celebrations. The event also extended into the spacious inner courtyard, scenically illuminated by ERCO outdoor luminaires. Staff from neighbouring workshops and studios also joined in the party (left). In the mock-up area of the new showroom, scenographic lighting effects can be presented whenever needed (right).

The organisation of the new offices is completely geared towards the requirements of the Italian market, but the look is typically ERCO – as ERCO directors Britta Schreiter and Tim Henrik Maack were able to see for themselves (above).
Maritim Utescene, Haugesund

With its attractive surroundings and open-air stage, the small Norwegian harbour town of Haugesund regularly attracts up to 10,000 visitors to the open-air events. This is no fictional figure. The "Sildajazz" festival alone, held in Haugesund since 1987, recorded 50,000 visitors in 2008. The neighbouring Rica Maritim Hotel runs the facility. When there is no scheduled evening event and to ensure that the striking white-clad stagetowers, located directly on the quay wall, are a spectacular sight, the designers combined ERCO's Light System DALI with 16 Grasshopper varychrome LED projectors. The lighting produced enables a fascinating scenic display for the minimum power consumption.

Architect: Opus Arkitekter, Haugesund
Electrical design engineers: Cowi AS, Haugesund

www.hotelmaritim.no